Dual-Primal FETI Algorithms for Edge Element Approximations: Two-Dimensional H And P Finite Elements on Shape-Regular Meshes

نویسندگان

  • Andrea Toselli
  • Xavier Vasseur
چکیده

A family of dual-primal FETI methods for edge element approximations in two dimensions is proposed and analyzed. The primal constraints are here averages over subdomain edges. It is shown that the condition number of the corresponding method is independent of the number of substructures and grows only polylogarithmically with the number of unknowns associated with individual substructures. The estimate is also independent of the jumps of both of the coefficients of the original problem. Numerical results validating our theoretical bounds are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3. A Generalized FETI - DP Method for a Mortar Discretization of Elliptic Problems

1. Introduction. In this paper, an iterative substructuring method with La-grange multipliers is proposed for discrete problems arising from approximations of elliptic problem in two dimensions on non-matching meshes. The problem is formulated using a mortar technique. The algorithm belongs to the family of dual-primal FETI (Finite Element Tearing and Interconnecting) methods which has been ana...

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

A deluxe FETI-DP algorithm for a hybrid staggered discontinuous Galerkin method for H(curl)-elliptic problems

Convergence theories and a deluxe dual and primal finite element tearing and interconnecting algorithm are developed for a hybrid staggered DG finite element approximation of H(curl) elliptic problems in two dimensions. In addition to the advantages of staggered DG methods, the basis functions of the new hybrid staggered DG method are all locally supported in the triangular elements, and a Lagr...

متن کامل

A Feti-dp Algorithm for Elasticity Problems with Mortar Discretization on Geometrically Non-conforming Partitions

Abstract. In this paper, a FETI-DP formulation for three dimensional elasticity on non-matching grids over geometrically non-conforming subdomain partitions is considered. To resolve the nonconformity of the finite elements, a mortar matching condition is imposed on the subdomain interfaces (faces). A FETI-DP algorithm is then built by enforcing the mortar matching condition in dual and primal ...

متن کامل

A Numerical Study of FETI Algorithms for Mortar Finite Element Methods

The Finite Element Tearing and Interconnecting (FETI) method is an iterative substructuring method using Lagrange multipliers to enforce the continuity of the nite element solution across the subdomain interface. Mortar nite elements are nonconforming nite elements that allow for a geometrically nonconforming decomposition of the computational domain into subregions and, at the same time, for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2005